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where Ii is the incident electric field in V.m–l. The induced mag-

neticfield inthe resonator is, again atresonance[ 6],

H=–p~e ()(B11)..,~sin~2R1 XII: I%
Ifd’

()
=3.96 sin~z J, 3.8317: E&

asp. = —j(a3/Nc)a& The value of a, read off on Fig. 6, is 3.14.
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Resonant Frequency of a TEOI;O Dielectric Resonator

YOSHIHIRO KONISHI, NORIO HOSHINO,

AND YOZO UTSUMI

Absfracf—The resonant frequency of a TEOIJO dielectric resonator

was obtained by assuming a cylindrical surface containing the cir-

cumference of a dielectric resonator as a magnetic wall. In such a

method, the error was less than 10 percent. Inthisshort paper, the

resonant frequency is obtained by a variational method, where the

surf ace impedance is variated from a infinite value [1]. The theoreti-

cal value of a resonant frequency has a good agreement with our

experimental result with an error less than 1 percent.

I. INTRODUCTION

In the past, the resonant frequency of a dielectric resonator was

obtained by assuming a cylindrical surface containing the circum-

ference of a dielectric resonator as a magnetic wall [2], and with

thk method error was less than 10 percent between the theoretical

values and the experimental ones. .

Yee [3] obtained the modified open-circuit boundary (OCB) ap-

proximation method for TEw” mode but he assumed a cylindrical

surface as a magnetic wall, and he obtained the variational method

for TM,~m mode, but he assumed two flat surfaces as a magnetic wall.

In our method, however, we do not assume only a cylindrical

surface but also two flat surfaces as a magnetic wall. We assume the

exponential decay in the z direction, and variate the surface imped-

ance from a infinite value.
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In the case where the sectional areas of a cylindrical dielectric

resonator face the metal plates at a short dktance as shown in Fig.

1 (a) (as in the case of microwave integrated circuit (MIC) use, for

example), the assumption of a magnetic wall mentioned before is

quite reasonable because the RF field of the resonator is in parallel

to the metal plates and crosses the cylindrical surface almost verti-

cally. However, in the case where the resonator is placed in a free

space or the distance between the resonator and the metal plates

becomes large, the parallel component of the RF field approaches

the axis of a resonator. Thk does not satisfy a magnetic wall assump-

tion. The situation is shown in Fig. 1 (b).
/

II. THEORETICAL VALUES BY MAGNETIC WALL

APPROXIMATION

When assuming the surf ace iSO to be a magnetic wall as shown ifi

Fig. 2, the resonant frequency can be obtained from (1)

Ic,.tan (kJ/2) = a J,(kPa) = O

lc,z + k./ = e,koz koz – CJ = koz

where kg is a propagation constant in a dielectric region along the z

axis, a is a damping constant in an air region inside a space sur-

rounded by & along the axis, k. ‘is a wavenumber along a radks,

and ko is a free-space wavenumber.

III. THEORETICAL VALUES OBTAINED BY A

VARIATIONAL METHOD

We assume the trial scalar functions internal to SO to be 41~and 410

qhs = Jo (k./)) COS(k#) (in dielectric)

+1. = w (42) Cos[kz (W) IJo (%) =p ( –~ I z 1) (in air:). (2)

In this case, the wall admittance Y, can be expressed by (3) using

the scalar function of (2)
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I?ig. 1. Magnetic flux for TEo15” mode. (a) Near the conducting wall. (b)

In free space.
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Fig. 2. Cylindrical coordinate s3-stem for dielectric cylinder.
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(3)

In (1) and (2), a takes the values cuo when the surface L$’Ois a mag-

netic wall, that is; A YP = O. However, Y@ takes a finite value A YP

in a practical case; and fcP, k,, and a should change their values to

fc~ = k, + Ak,, k: = k, + Ak,, a’ = a + Aa. Also, w changes the

values to 00’ = aO + AL.

From (l), we can obtain the relation of (4) and (5)

()k.1 L-2 2 k.i~= :=;+___ +;
., 2 k,

(4)

ak. (MOpO (Wq + k.)

au = k, (CYq+ k.) “
(5)

Substituting (2), (4), and (5) into (3), we get (6)

(6)

On the other hand, the RF field outside the surface & can be

obtained. The z component (which is in parallel to the axis of a

cylindrical resonator) of the RF field H. should satisfy the station-

ary formula of (7), [1]

so so

where J is a trial current on the surface LSOto satisfy the boundary

conditions; u. and ue are unit vectors toward the z and o directions,

respectively; n is a unit vector perpendicular to the surface EL; EOO

and H,o are 6 and z components of the electric field and magnetic

field inside S’..

In (7), H., = O in the case of A~, = O, and H.o of (7) takes the

values of (8) for the case of A YP # O

Hzo = AYPEm (8)

Substituting (8) into (7), we get (9)

so

AYP=~. (9)”

//
Eooz dS

.%

Ifi the case of t,>> 1, we get (10) from (6) and (9)

&

[“ HJhdS

1 Eoo’ dS
—.

Putting the scalar function of the field outside the surface ,SO as

02 (P,z) and its Fourier transform as & (p,w), we get the relation

of (11)

!
42(P,W) = m C#V(P,z) exp ( –jwz) dz

—m

@2(P,z) = ~
/

.

ZT _ c&(P,w) exp ( jwz) dw. (11)
m

& can be Also expressed by (12), [4]

&(P,W) = ~(w) Hot2j[p(ko2 – W’)il’]

1

‘/

m

~(w) = (k,z – wZ) ‘@Ho@J’[a(k$ – w’)1/2] _m ‘E’” ‘a’z’)

.exp ( —jwz’) dz’. (12)

42 (P,z) Cari be obtained from (11) and W), and we hmve the rela-
tionship of (13) from which we get (14)

(13)H = –jwcou.+t + ~~o V V -%$,

H. =
“/

z= _: (koz -- WZ) I/2. H0(2)[a ‘k02 – ‘2) 1“1 exp ( ~wz) dw
Hl@[a (kOZ – w2) I/’]

/

.
. Eo,(a,z’) exp ( –jwz’) dz’. (14)

. .

We can get E~o from the relation of E60 = &u/r3p by using ~1 in

(2). Substituting the values of EW into (14) and (10), we get

As/co, as in (15)

A@

— = ~ (%%%~o,.%)
coo

–2 (Xz + LuJ)
J

m (d – Z’)’/’
[HO(’)(ZO2 –.z’)’g ~, ;X

—co [H,(’)(z,’ – Z’)’q
——

X.2 + Za%
– x sin (Zg) “ cos (xZ~) “ (Z.2 _ x2) (x.2 + Z2) (15)

where x, = k.a, x, = k,a, x, = koa, x. = wa, g = l/2a. Since we get

the values of x,, x,, x., and XO from & in (1), we get the relation

of (16)

Au
—= F(@).
Uo

Ace/w can be obtained from (16) by using & and e,.

(16)

IV. COMPARISON BETWEEN THEORETICAL VALUES

AND EXPERIMENTAL ONES

In the case of e, = 35 and 88, the values of resonant frequencies

computed from (1) (magnetic wall approximation) are shown by a

dashed line, and the values computed from (15) (variational

method) are shown by a solid line. Tlie experimental values are

shown with signs ( X ) in Fig. 3. Fig. 3 shows that the :approximate

values obtained from (1) are smaller than the experimental values

by about 10 percent. On the contrary, the values obtained by a
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Fig.3 Ccimparison between theoretical values and experimental ones.

variational method agree well with the experimental ones to within

an

[1]

[2]

[3]

[4]

error Of 1 percent.
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Reciprocity Theorem for a Regioh with Inhomogeneous

Bianisotropic Media and Stirface Impedance

MASANORI KOBAYASHI

Absfracf—It is shown that the modified reciprocity theorem holds
for a region bounded by inhomogeneouii ahisotropic impedance

~wrfaces and composed of regioris with lossless inhomogeous biqiso-

tropic media; aird besides, the reciprocity theorem holds for the case
wiilr a condition.

I. INTRODUCTION

Bianisotropic media or moving media have been treated in the

literature [1 ]–[13], [18]. A moving medium, even if it is isotropic

in its rest frame, must be treated as bianisotropic [6]. Recently, it

was 8hown by Kong and Cheng [1] that a properly modified reci-
procity theorem could be applied to bianisotropie media; they
(discussedthe modified reciprocity theorem between a single-blaniso-
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tropic medium region and its complementary region. These regic,ns

are either bounded by perfectly conducting surfaces, or by surfaces

that recede to infinity. However, waveguides with surface impedance

walls are also of interest [14], [15].

In this short paper, the modified reciprocity theorem is derived

in a iegion bounded by impedance surfaces; and besides, the reci-

procity theorem is derived for the case with a condition.

II. THEORY

Consider a region R consisting of p subregion; in a three-dimen-

sional space. The region R is bounded by inhomogeneous anisotropic

impedance surface ~ and is composed of the regions Ri (i = 1,2,.. .,

p). Let the region lti be filled with a lossless inhornogeneous bianiso-

tropic medium [3], [18] and be bounded by the surface &.

Maxwell’s equations for a time-harmonic and finite electric cur-

rent density, J(r) exp ( jot), in such a region R are given by

V X E(r) = –j0J3(r) (1)

V X H(r) = jail(r) + J(r) (2)

subject to the conEtitutive relations

D(r) = Z(r) -l?(r) + i?(r) -H(r) (3)

B(r) = 7(r) .E(r) + &(r) .H(r) (4)

and the impedance boundary condition

i2X E(r) = –fi X[Z(r)”{~X H(r))] oni3 (5)

and the conditions at the interfaces flt 11s~ (ijk = 1,2,. .0 ,p; i # k)

,.,, AA
% X {% X E(r) ) kOW,7ESt = fik X {~k x E(r) ) Ismsi,r,sk (6)

A.. ,..

rzi X {fzi X H(r) ) ],s. risk. resi = m X {m X H(r) ) Iskn.si, rfsk (7)

tensors of rank 2;

when7 < Ri (i = 1,2,. so,p);

outer normal unit vectors to iS’

and i3i (i = 1,2,. . ., P), respec-

tively;
—— surface impedance tensor.

Now let us assume that the medium is such that [3], [18]

:*T = ~ (8)

and let the field solutions corresponding to current sources J. md

&be E. and Ha, and & and &, respectively. We obtain

v.(Es* X Ht, + E~ X H.*) = —J.*-Et) — Jb.&* (:11)

where the asterisk denotes the complex conjugate and the super-

script 2’ denotes the transpose. Applying the divergence theorem

to (11), we obtain the following modified Lorentz reciprocity

theorem for the region Ri (i = 1,2,.. .,p) :

///
(–~.*.& – J,-z?.*) dV

si

By using (5), the integrand in the right-hand side of (12) becomes

zero on the surface 6’. il AS if the surface impedance tensor -??(r),
which is defined in (5), is such that


