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where E; is the incident electric field in V.m™. The induced mag-
netic field in the resonator is, again at resonance [6],
- P e* Pe
i _ p

| Be 1>

T
(Bll)norm Sln Rl <x11 ;) 724:

. TR r
3.96 sin — Jl <3.8317 _> Elﬁd,
L a

as po = —j(a®/Ne)ai,. The value of o, read off on Fig. 6, is 3.14.
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New

Resonant Frequency of a TEy,° Dielectric Resonator

YOSHIHIRO KONISHI, NORIO HOSHINO,
anp YOZO UTSUMI

Abstract—The resonant frequency of a TEq;° dielectric resonator
was obtained by assuming a cylindrical surface containing the cir-
cumference of a dielectric resonator as a magnetic wall, In such a
method, the error was less than 10 percent. In this short paper, the
resonant frequency is obtained by a variational method, where the
surface impedance is variated from a infinite value [1]. The theoreti-
cal value of a resonant frequency has a good agreement with our
experimental result with an error less than 1 percent.

I. INTRODUCTION

In the past, the resonant frequency of a dielectric resonator was
obtained by assuming a cylindrical surface containing the circum-
ference of a dielectric resonator as a magnetic wall [27], and with
this method error was less than 10 percent between the theoretxcal

“values and the experimental ones.

Yee [3] obtained the modified open-circuit boundary (OCB) ap-
proximation method for TE;.® mode but he assumed a cylindrical
surface as a magnetic wall, and he obtained the variational method
for TMyn, mode, but he assumed two flat surfaces as a magnetic wall.

In our method, however, we do not assume only a cylindrical
surface but also two flat surfaces as a magnetic wall. We assume the
exponential decay in the z direction, and variate the surface 1mped-
ance from a mﬁmte Value
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In the case where the sectional areas of a cylindrical dielectric
resonator face the metal plates at a short distance as shown in Fig,
1(a) (as in the case of microwave integrated circuit (MIC) use, for
example), the assumption of a magnetic wall mentioned before is
quite reasonable because the RF field of the resonator is in parallel
to the metal plates and crosses the cylindrical surface almost verti-
cally. However, in the case where the resonator is placed in a free
space or the distance between the resonator and the metal plates
becomes large, the parallel component of the RF field approaches
the axis of 'a resonator. This does not satisfy a magnetic Wall assump-
tion. The situation is shown in Fig. 1(b).

II. THEORETICAL VALUES BY MAGNETIC WALL
APPROXIMATION '

When assuming the surface So to be a magnetic wall as shown in
Fig. 2, the resonant frequency can be obtained from (1)

kootan (k.1/2) = a Jo(ke) =0

B+ kbt = ekt kp — af = kot

ko == (,v.\o(é(),bto)ll2 Xy = 27ra/)\ E = l/2a (1)
where k. is a propagation constant in a dielectric region along the 2
axis, « is a damping constant in an air region inside a space sur-
rounded by S, along the axis, k,'is & wavenumber along a radius,
and ko is a free-space wavenumber.

III. THEORETICAL VALUES OBTAINED BY A
VARIATIONAL METHOD

We assume the trial sealar functions internal to Sy to be ¢12 and ¢1a

d1a = Jo(kpp) cos (k.2) (in dielectric)

$1a = exp (al/2) cos[k.(1/2) Wo(kwp) exp (—a|2]) (inair). (2)
In this case, the wall admittance ¥, can be expressed by (3) using
the scalar function of (2)
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' 2
n- ().~ (e /%),
E, r=a Jwro dp ~a

In (1) and (2), w takes the values wo when the surface S, is a mag-
netic wall, that is, AY, = 0. However, Y, takes a finite value AY,
in a practical case; and %,, k., and « should change their values to
k) =k, + Ok, k' = k. + Aky, o = a + Aa. Also, we changes the
values t0o wy’ = wo + A&:.

From (1), we can obtain the relation of (4) and (5)

(3)

_a“_f__l_g a_2+l_c_,z (4)
T ok k. T 2 \k 2
ok, _ weopo (e, + k) )
dw ky(om + k)
Substituting (2), (4), and (5) into (3), we get (6)
Ao — M.L.Ayﬂ, (6)

ane, + k, ae

On the other hand, the RF field outside the surface S, can be
obtained. The z component (which is in parallel to the axis of a
cylindrical resonator) of the RF field H., should satisfy the station-
ary formula of (7), 1]

// JeusEso dS =// (H, — Hao)tt, X noupBpo dS =0 (7)
S S

where J is a trial current on the surface S, to satisfy the boundary
conditions; u. and us are unit vectors toward the z and 6 directions,
respectively; n is a unit vector perpendicular to the surface So; Eso
and H. are 6 and 2 components of the electric field and magnetic
field inside S,.

In (7), H. = 0 in the case of AY, = 0, and H,, of (7) takes the
values of (8) for the case of AY, % 0

Hzo = AYpan. (8)

Substituting (8) into (7), we get (9)

//H,Eoo ds
// o i

In the case of e > 1, we get (10) from (6) and (9)

AY, )}

/ H,Ey dS

Ao (ks an) S

wo aoe‘r]'wg'eo € :
[[ Bt as

So

/ H.EqdS
_ Ik tan)

aanwoepe, @
/ Eg®dS
—

Puttlng the scalar function of the field outside the surface S, as
¢2(p,2) and its Fourier transform as @:(p,w), we get the relation

(10)

113

of (11)

$2(pw) = /w $2(p,2) exp (—jwe) dz

1 ©
$2(p,2) = 2 ] @1(p,w) exp ( jwz) dw. (11)

&: can be also expressed by (12), [4]
Ba(pyw) = f(w)Ho®Lp (ko? — w?)1/2]

1 . @
(k02 _ w2)1/2H0(2)’[a (koé _ w2)1/2] = Eoo(a,z')

flw) =
sexp (—jwz’) dz’. (12)

#2(p,2) can be obtained from (11) and (12) , ahd we have the rela-

. tionship of (13) from which we get (14)

. 1 .
H = —joel.p; + —— VV- U2 (13)
Jeono

H, =

. o H,® ko2 — w212
L [ i - oy DL = 0 o () aw

H @[ a (k2 — w?)12]

27wopm ;

/ Eoo(a,2’) exp (—jwz') dz'.

—c

(14)

We can get By from the relation of Egp = d¢1/9p by using ¢; in
(2). Substitutirig the values of Eg into  (14) and (10), we get
Aw/wy as in (15)

A
= = F(x,,x,,xa,xo,g,e,)-
wo
@ [Ho® (g2 — 22)42]
— — pp LI T A
2(x, +xa7;)/_w(xoz x2)1/2 [H.® (za? — a2)i] A?dx
in (22, 2 (k)
ey [5 n sin (2z.£) + cos? (x.£)
2z, Ta
4= z.8in (T.8) -Cos (x) | Ta 008 (2£)cos (2:£)
T2 — a? Z.2 + a2
T2+ Tl

— zsin (zs) <cos (z.£) ¢ (15)

(2 — 2% (22 + 2%)
where z, = k.a, €, = k,a, o = koa, . = wa, £ = 1/2a. Since we get
the values of z,, z,, z., and z, from & in (1), we get the relation
of (16)

2 Pt

wo

(16)

Aw/wo can be obtained from (16) by using £ and e,

IV. COMPARISON BETWEEN THEORETICAL VALUES
AND EXPERIMENTAL ONES

In the case of ¢, = 35 and 88, the values of resonant, frequencies
computed from (1) (magnetic wall approximation) are shown by &
dashed line, and the values computed from (15) (variational
method) are shown by a solid line. The experimental values are
shown with signs (X) in Fig. 3. Fig. 3 shows that the approximate
values obtained from (1) are smaller than the experimental values
by about 10 percent. On the contrary, the values obtained by a
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Fig. 3 Comparison between theoretical values and experimental ones.

variational method agree well with the experimental ones to within
an etror of 1 percent.
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New

Reciprocity Theorem fof a Region with Inhomogeneous
Bianisotropic Media and Surface Impedance

MASANORI KOBAYASHI

- Abstract=It is shown that the modified reciprocity theorem holds
for a region bounded by mhomogeneous anisotropic impedance
surfaces and composed of regions with lossless 1nhomogeous blamso-
{ropic media; and besides; the reciprocity theorem holds for the case
with a condition. .

1. INTRODUCTION

Bianisotropic media or moving media have bieen treated in the
literature [13-[1387, [18]. A moving medium, even if it is isotropic
in its rest frame, must be tredted as bianisotropic [67]. Recently, it
was shown by Kong and Cheng [1] that a properly modified reci-
procity theorem could be applied to bianisotropic media; they
discussed the modified reciprocity theorem between a single-bianiso-
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tropic meditm region and its complementary region. These regions
are either bounded by perfectly ¢onducting surfaces, or by surfaces
that recede to infinity. However, waveguides with surface impedance
walls are also of interest [147, [15].

In this short paper, the modified reciprocity theorem is derived
in a region bounded by impedance surfaces; and besides, the reci-
procity theorem is derived for the case with a condition.

II. THEORY

Consider a region R consisting of p subregioﬁqgfin a three-dimen-
sional space. The region R is bounded by inhomogenecus anisotropie
impedance surface S and is coniposed of the regions B; (7 = 1,2,++ -,
p). Let the region R; be filled with a lossless inhomogeneots bianiso-
tropic medium [37], [187 and be bounded by the surface S..

Maxwell’s equations for a titne-harmonic and finite electric cur-
rent density, J(r) exp ( jwt), in such a region R are given by

VX E(r) = —jwB(r) 1)
VX H(r) = juD(r) + J(r) ()
subject to the constitutive relations
D(r) = &(r)-E(r) +%(r)-H(r) (3)
B(r) = 5(n)-E(r) + §()-H(r) o)

and the impedance boundary condition

I

# X E(@) =
and the conditions at the interfaces ;N Sk (4,k = 1

—n X [Z@)-{n X HT)}] on 8 (5)
;27' MY 1 5 k)
lsenss,ress  (6)

e X {#e X H) Y |siasures: = n X {0e X HT)} lomngsres,  (7)

7y X A7t X E(1)} |sinsres; = 7k X {#ie X E(r)}

where
AT A tensors of rank 2;
E=5 B =0, R=%,v=§; Wheh?ERi(i=l,2,‘-°,p); _
, 7 : outer normal unit vectors to S
and 8; (z =1,2,+++,p), respec-
tively;
Z = surface 1mpedance tensor.

Now let us assume that the medium is such that [3], [18]

B = § (8)
7 =3 9)
BT =3 (10

and let thie field solitions corresponding to current sources J, and
J» be E, and H,, and E, and H,, respectively. We obtain
Ve (Es* X Hy + Ey. X H*) = —J*Ey — JpoE* (11)

where the asterisk denotes the complex con]ugate and the super-
seript 7' denotes the transpose. Applying the divergence ‘theorém
to (11), wé obtain the following modified Lorentz reciprocity
theorem for the region R; (1 = 1,2,«++,p):

// (—Jo*Ey — JyoE*) 4V
R

= / (E* X Hy + Ey X Ho*)-7;d8.  (12)

8

By using (5), the integrand in the right-hand side of (12) becomes
zero on the surface S;N S if the surface impedance tensor Z(r),
which is defined in (5), is such that



